
 The Design and Implementation of OpenBGPd - SWINOG-9 - 29. September 2004 Page 1 of 23

The Design and Implementation of OpenBGPd

André Oppermann

<oppermann@networx.ch> <andre@freebsd.org>

Claudio Jeker

<jeker@networx.ch> <claudio@openbsd.org>

SWINOG-9

Berne, 29. September 2004

mailto:andre@freebsd.org

 The Design and Implementation of OpenBGPd - SWINOG-9 - 29. September 2004 Page 2 of 23

Why another BGP Daemon? What is wrong with the existing ones?

Cisco - closed source, arcane config style, bundled with massively overpriced

and slow-CPU hardware.

Juniper - closed source, modern config style, bundled with expensive

hardware.

Zebra/Quagga - GPL source, arcane config style, very inefficient and ugly

implementation, chokes under high load, huge memory requirements.

Others - only basic implementations, not ready for production networks, or no

longer maintained.

Why?

 The Design and Implementation of OpenBGPd - SWINOG-9 - 29. September 2004 Page 3 of 23

Very efficient implementation (memory usage and CPU load).

Highly scalable (number of peers and routes).

Easy to extend.

Intuitive and practical configuration language.

Security and safety by design.

BSD licensed.

Design Goals

 The Design and Implementation of OpenBGPd - SWINOG-9 - 29. September 2004 Page 4 of 23

André wants to write new BGP daemon since back in middle of 1999 in

programming language ADA95.

However he only ever gets to think in depth about the optimal design of the

daemon but never writes a single line of code.

Henning Brauer comes up with a first code skeleton of the Session Engine in

November 2003. He looks for people to help him to develop the code further.

Claudio and André decide to jump onto this and pull all the ideas and system

design drafts out of the drawer and start coding.

Little History

 The Design and Implementation of OpenBGPd - SWINOG-9 - 29. September 2004 Page 5 of 23

OpenBGPd has four parts:

General Design

 The Design and Implementation of OpenBGPd - SWINOG-9 - 29. September 2004 Page 6 of 23

1. Session Engine handles all BGP sessions to neighbors and all timers

(keepalive, hold and idle timer).

2. Route Decision Engine handles the BGP Routing Table (Prefixes and Paths)

and generates the Updates.

3. Parent Process handles the configuration and interaction with the kernel

routing table (FIB).

4. BGP Control program is the human interface and allows to look at and

control of the bgpd processes.

General Design

 The Design and Implementation of OpenBGPd - SWINOG-9 - 29. September 2004 Page 7 of 23

SE, RDE and Parent Process is one program which forks into three processes

at startup. Each process gets its own quantum of CPU time and is scheduled

by the Operating System.

BGP Control program connects through a local UNIX domain socket to the

Session Engine.

General Design

 The Design and Implementation of OpenBGPd - SWINOG-9 - 29. September 2004 Page 8 of 23

Advantages

Separation of functional parts of the BGP Daemon into separate processes.

The processes communicate through messages with each other. This is a

object oriented approach.

No single part can monopolize the CPU. The Operating System makes sure

each process get its quantum.

The Session Engine handles all timers itself. Even if the RDE is busy the SE

ensures that Keepalives are generated perfectly in time to keep the BGP

sessions up.

General Design

 The Design and Implementation of OpenBGPd - SWINOG-9 - 29. September 2004 Page 9 of 23

The RDE makes heavy use of various forms of linked lists to avoid traversal of

the entire table entirely (table walker on Cisco).

All paths and prefixes from each neighbor are linked together so when a peer

closes we only have to travel the list to recompute the nexthops and to

generate the updates in one go. Very fast and efficient.

The same for nexthops which might become unreachable.

Route Decision Engine Design

 The Design and Implementation of OpenBGPd - SWINOG-9 - 29. September 2004 Page 10 of 23

OpenBGPd uses about 11MB RAM for each full view (146k prefixes) it

receives. The first one takes about 20MB.

It takes about 5 seconds to send the entire table to a new neighbor.

It takes about 1 second to purge a dropped neighbor from the table.

Due to the separated design it can handle essentially an unlimited number of

flapping neighbors. In this case the RDE may lag a little bit but the SE keeps

all other sessions up. Full connectivity is maintained.

In this case Instead of milliseconds it may take a second for normal update to

get propagated. This is much faster than Cisco and Zebra/Quagga can handle

this.

Performance and Memory consumption

 The Design and Implementation of OpenBGPd - SWINOG-9 - 29. September 2004 Page 11 of 23

Testserver at TIX in Zürich [194.42.48.111]:

bgpctl show

Neighbor AS MsgRcvd MsgSent OutQ Up/Down State/PrefixRcvd

194.42.48.37 4589 96012 2357 0 19:37:56 144914

194.42.48.28 8237 48359 2357 0 19:37:56 67136

194.42.48.39 6772 66275 2357 0 19:38:01 145837

194.42.48.32 15623 80597 2357 0 19:38:02 144864

194.42.48.15 9044 291396 2352 0 11:01:27 145035

194.42.48.14 9177 77786 2358 0 19:38:05 145827

194.42.48.6 8758 83688 2358 0 19:38:06 144844

194.42.48.2 8271 65429 2358 0 19:38:29 144881

194.42.48.47 3257 110024 2360 0 19:39:10 144755

194.42.48.18 1836 69865 2361 0 19:39:51 145675

62.48.4.4 65001 62218 2358 0 19:38:13 144884

64.185.97.128 23265 70855 2358 0 19:38:31 145839

194.42.48.16 13030 393509 2261 0 08:55:26 145139

194.42.48.0/24 0 0 0 0 Never Active

Approx. 130MB RAM used for these 12 ½ full feeds, 1.8million prefixes.

Performance and Memory consumption

 The Design and Implementation of OpenBGPd - SWINOG-9 - 29. September 2004 Page 12 of 23

RFC 1771 A Border Gateway Protocol 4

RFC 1997 BGP Communities Attribute

RFC 2385 Protection of BGP Sessions via the TCP MD5 Signature Option

RFC 2858 Multiprotocol Extensions for BGP4

RFC 2918 Route Refresh Capability for BGP4 (broken by design)

RFC 3392 Capabilities Advertisement with BGP4

RFC 3765 NOPEER Community

Implemented RFC’s

 The Design and Implementation of OpenBGPd - SWINOG-9 - 29. September 2004 Page 13 of 23

Atomic configuration updates

When you reload the configuration file all changes will be applied. New neighbors
are added and deleted one will be removed. After reload file and running
configuration will be in guaranteed in sync. However if filters have changed on an
existing session you have to manually clear the affected sessions for the filters to
become effective on existing prefixes.

MRT file format table and update dumping

dump table “/var/log/bgpd-view-%h%m” 600

dump update in “/var/log/bgpd-updates-%h%m” 3600

Cool Features

 The Design and Implementation of OpenBGPd - SWINOG-9 - 29. September 2004 Page 14 of 23

Wildcard passive listening

You can specify a range of IP addresses from which any other router can connect.
The remote AS will be taken from the Open Message. Neighbors are dynamically
created from the template.

group "TIX" {

 announce none

 neighbor 194.42.48.0/24 {

 descr "TIX peer"

 passive

 }

}

Cool Features

 The Design and Implementation of OpenBGPd - SWINOG-9 - 29. September 2004 Page 15 of 23

BGPd can feed firewall tables (pf only at the moment). Useful for ALTQ

queueing etc.

set pftable bla

Simply default announce policies: self, none, all, default-route

neighbor 10.10.10.1 {

remote-as 65110

announce self

}

Link state detection (for Ethernet). If link gets disconnected you don’t have to

wait for BGP session to time out. Cisco calls this fast external fallover.

Cool Features

 The Design and Implementation of OpenBGPd - SWINOG-9 - 29. September 2004 Page 16 of 23

Route collector knob to turn off best path selection. Useful if the machine only

collects routes to dump them to MRT files

route-collector yes

TCPMD5 and IPSEC (static keys and IKE)

neighbor 10.10.10.1 {

tcp md5sig password reallysecret

ipsec ah out spi 55 sha1 <key> aes-128-cbc

ipsec ah in spi 56 sha1 <key> aes-128-cbc

ipsec ah ike

}

Cool Features

 The Design and Implementation of OpenBGPd - SWINOG-9 - 29. September 2004 Page 17 of 23

IPv6 support in SE and RDE. Only IPv6 NLRI over IPv6 sessions is supported.

Only the global address will be used for next hops. (BTW: IPv6 is broken by

design and it’s implementations are damn ugly hacks).

Route Flap Dampening according to RFC 2439.

Transparent AS. Do not prepend local AS.

Prepend Neighbor command. Prepend the neighbors AS number n-times.

Additive Metrics (MED and local pref).

New Features already written

 The Design and Implementation of OpenBGPd - SWINOG-9 - 29. September 2004 Page 18 of 23

Much better and more extensive filter configuration. Good input from Markus

Wild will be incorporated.

Automatic full mesh. This is an extension of the passive wildcard acceptor.

Full support for “soft reconfig” in- and outbound. The nice design of the RDE

makes this relatively easy to implement.

Even better and more efficient memory allocator. We have many small fixed

and variably sized objects.

SNMP integration for general and individual session information. Via bgpctl

socket interface.

New Features planned

 The Design and Implementation of OpenBGPd - SWINOG-9 - 29. September 2004 Page 19 of 23

Central full route views. Instead of querying all routers you can see

everything in one single place.

Firewall table feeding for FreeBSD IPFW.

Better interaction with other IGP routing protocols. (OpenIGP for sure)

New Features planned

 The Design and Implementation of OpenBGPd - SWINOG-9 - 29. September 2004 Page 20 of 23

OpenBGPd is maintained in the OpenBSD source tree. All necessary

adjustments for other BSD’s will be included there.

FreeBSD works except TCP-MD5 and IPSEC because of differences in the

PFKEY interface between the operating systems. Work is under way to

address that. After FreeBSD 5.3 Release OpenBGPd will in included in the

FreeBSD ports collection in the network category.

NetBSD, Darwin (MacOS X), DragonFlyBSD: No status yet but should be the

same as with FreeBSD.

Linux port needs some larger adjustments (Netlink API for Kernel routing

table). Nobody has yet stepped forward to do it.

Availability

 The Design and Implementation of OpenBGPd - SWINOG-9 - 29. September 2004 Page 21 of 23

OpenBGPd is stable, reliable and ready for production use.

Practical use is limited smaller sites due to current restrictions in filter

language.

It is used by a few dozen smaller AS’s as primary BGP speaker already.

Stability

 The Design and Implementation of OpenBGPd - SWINOG-9 - 29. September 2004 Page 22 of 23

OpenISISd

by Claudio, in “I want to do this, where is the RFC?” mode, no code yet.

OpenIGP

André, Fresh IGP Protocol newly designed from ground up to be ultra-fast,

ultra-scalable and conceptually non-complex (unlike OSPF and ISIS). No nasty

hacks which add huge amounts of complexity! First parts written, about 10%

done. Will talk more about this on next SWINOG!

Related Projects

 The Design and Implementation of OpenBGPd - SWINOG-9 - 29. September 2004 Page 23 of 23

That’s it. Any questions?

	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10
	Page 11
	Page 12
	Page 13
	Page 14
	Page 15
	Page 16
	Page 17
	Page 18
	Page 19
	Page 20
	Page 21
	Page 22
	Page 23

